『統計検定準1級対応 統計学実践ワークブック』

(日本統計学会 編, 学術図書出版社)

正誤表 第1版第4刷用

頁	場所	誤	正
65	8 行目	「これを、最尤推定量の 漸近正規性 に脚注として以下を追加してくだ。 なお、漸近正規性をもつ推定量に ラーメル・ラオ不等式の下限を達成 こともあるが、分散の極限と極限と 上記の漸近有効性の定義とは厳密	対して、その極限分布の分散がク 支することを漸近有効性と定義する 分布の分散は一般には異なるので、
66	下 14 行目	半径 <i>r</i> を	半径を
66	下 11 行目	このとき	コインの半径は平均 <i>r</i> の確率分布 に独立同一に従うとするとき
67	下1行目	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	$\frac{1}{n}\sum_{i=1}^{n} X_{i}$
68	4 行目	最尤推定量である.	最尤推定値である. これより
			最尤推定量は $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ である.
69	4 行目	「ある.」の後に以下を追加してくっただし、これはコインの半径が平均あり、コインの面積が平均 πr^2 の分用いても問題ないことに注意。	匀 rの分布に従うと仮定したからで
77	図 10.1	0.025 0.025 -1.96 1 0 1 1.96 棄却域 受容域 棄却域	0.025 -1.96 -1 O 1 1.96 棄却域 受容域 棄却域
78	10 行目	観察されたデータよりもより稀に しか起こらない	観察されたデータ <mark>と同じか、</mark> より 稀にしか起こらない

83 問 10.1 ※答および解説を以下に差し替えてください.

[1] 0.6915.

帰無仮説 $H_0: p_0=0.45$ のもとで、n が大きいとき、標本支持率 \hat{p} は近似的に正規分布 $N(0.45,(0.45\times0.55)/n)$ に従うため、有意水準 5%の両側検定で n=600 のとき、右側の棄却限界値 c は

$$c = 0.45 + 1.96 \times \sqrt{\frac{0.45 \times 0.55}{600}} = 0.4898$$

となる. 対立仮説 $H_1: p_1=0.50$ のとき \hat{p} は近似的に正規分布 $N(0.50,(0.50\times0.50)/600)$ に従う. 検出力は、この \hat{p} について

$$P(\hat{p} \geq c)$$
 である. 標準化 $Z = \frac{\hat{p} - 0.50}{\sqrt{\frac{0.50 \times 0.50}{600}}}$ を行うことで

$$P(\hat{p} > c) = P(Z > -0.4997) = 1 - P(Z > 0.4997)$$

よって標準正規分布表より、検出力は 0.6915 である。なお左側の棄却域の確率は無視できる。

[2] 779.

標準正規分布表より $z_{0.80} = -z_{0.20} = -0.84$ であるから

$$0.45 + 1.96 \times \sqrt{\frac{0.45 \times 0.55}{n}} = 0.50 - 0.84 \times \sqrt{\frac{0.50 \times 0.50}{n}}$$

となるnを求めるとn = 778.51となり、必要な標本サイズは779となる。

124 3 行目
$$X_t = \sum_{i=1}^{N_t} U_k$$
 $X_t = \sum_{k=1}^{N_t} U_k$

$$163$$
 下 4 行目 生存関数 T 生存時間 T

175
$$\not \equiv (20.6)$$
 $S_{[k]} = \sum_{i=1}^{N} \sum_{j=1}^{2} (\overline{y}_{[k]j} - \overline{y})^2$ $S_{[k]} = \sum_{i=1}^{N/2} \sum_{j=1}^{2} (\overline{y}_{[k]j} - \overline{y})^2$

178 下 1 行目
$$2^{3-1} = 8$$
 $2^{4-1} = 8$

185	下2行目	すべて調査単位	すべて <mark>の</mark> 調査単位
191	下8行目	修正項 $(N-n)(N-1)$	修正項 $(N-n)/(N-1)$
194	下7行目	$+\cdots+(5-5.5)(5-4.5)$	$+\cdots+(5-5.5)(4-4.5)$
198	例 2〔1〕	小テストの結果を図 22.1 のよう に第 1, 第 2 主成分で	小テストの結果を第1, 第2主成分で
204	下7行目	$(\hat{\boldsymbol{w}}^{\top}\overline{\boldsymbol{x}}_1 + \hat{\boldsymbol{w}}^{\top}\overline{\boldsymbol{x}}_2)/2$	$(\hat{\boldsymbol{w}}^{\top}\overline{\boldsymbol{x}^{(1)}} + \hat{\boldsymbol{w}}^{\top}\overline{\boldsymbol{x}^{(2)}})/2$
213	⊠ 23.4	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	E E E E E E E E E E E E E E E E E E E
213	5 行目	アルファベットLを表すサンプル $m{x}_{ m L} = (2.5, -1.1, 0.0, -0.8, 1.0)^{ op}$	アルファベット A を表すサンプル $oldsymbol{x}_{\mathrm{A}} = (0.9, 0.7, 0.8, 2.1, 5.2)^{ op}$
213	8 行目	新しく観測した L	新しく観測した $oldsymbol{x}_{A}$
214	下2行目	L に対応する新しいサンプルを射影した点 $(\boldsymbol{w}_1^{\top}\boldsymbol{x}_L, \boldsymbol{w}_2^{\top}\boldsymbol{x}_L) = (0.44, -1.24)$ からの距離はそれぞれ $8.05, 2.10, 9.60$ である.	A に対応する新しいサンプルを 射影した点 $(\boldsymbol{w}_1^{\top}\boldsymbol{x}_A, \boldsymbol{w}_2^{\top}\boldsymbol{x}_A) =$ (5.52,0.31) からの距離はそれぞ れ 4.01, 3.57, 4.41 である.
216	下 10 行目	$d_m(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{p} (x_i - y_i ^m)^{1/m}$	$d_m(\boldsymbol{x}, \boldsymbol{y}) = \left(\sum_{i=1}^p \left x_i - y_i\right ^m\right)^{1/m}$
242	1 行目	$ \phi > 1$ ならば	$ \phi_1 > 1$ ならば
250	下7行目	周期が λ_1 から λ_2 の変動に帰着する変動	周波数 λ_1 から λ_2 に帰着する変動
272	14 行目	性質 1 $A,B \in V$ が連結でないなら、因子 A,B は独立である.	性質 1 $A,B \in V$ が連結でないことと、因子 A,B が独立であることは同値である。
282	12 行目	$\exp\left(-\frac{(x_i-\mu)}{2\sigma^2}\right)$	$\exp\left(-\frac{(x_i-\mu)^2}{2\sigma^2}\right)$
285	下6行目	アリゴリズム	アルゴリズム

 $\{g_{\mathbf{j}}(x_1),\ldots,g_{\mathbf{j}}(x_m)\}$

下 9 行目 $\{g_1(x_1),\ldots,g_j(x_m)\}$

314