
『統計検定準1級対応 統計学実践ワークブック』

(日本統計学会 編, 学術図書出版社)

正誤表 第1版第6刷用

頁	場所	誤	正
65	8 行目	「これを、最尤推定量の 漸近正規性 (asymptotic normality) という.」に脚注として以下を追加してください. なお、漸近正規性をもつ推定量に対して、その極限分布の分散がクラーメル・ラオ不等式の下限を達成することを漸近有効性と定義することもあるが、分散の極限と極限分布の分散は一般には異なるので、上記の漸近有効性の定義とは厳密には異なる.	
66	問 8.3 の 1 行目	半径 <i>r</i> を	半径を
66	問 8.3 の 4 行目	このとき	コインの半径は平均 r の確率 分布に独立同一に従うとする とき
67	下1行目	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	$\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$
68	4 行目	最尤推定量である.	最尤推定値である。これより 最尤推定量は $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ である。
69	4 行目	「ある.」の後に以下を追加してください. ただし、これはコインの半径が平均 r の分布に従うと仮定したからであり、コインの面積が平均 πr^2 の分布に従うなら、観測面積の平均を用いても問題ないことに注意.	
101	5 行目	6 人に与えられる順位の組合 せ	群 A の 3 人 に与えられる順位 の組合せ
101	下 2 行目	7人に与えられる順位の組合 せ	群 A の 3 人 に与えられる順位 の組合せ
104	11 行目	割り振った <mark>た</mark> もの	割り振ったもの
105	3 行目	各群の順位 <mark>和</mark> の平均	各群の順位の平均
105	14 行目	$(x_i, y_i) \succeq (x_j, y_j) \ (i \neq j)$	$(x_i, y_i) \succeq (x_j, y_j) \ (i < j)$

214	下 2 行目	\mathbf{L} に対応する新しいサンプルを射影した点 $(\boldsymbol{w}_1^{T}\boldsymbol{x}_{L}, \boldsymbol{w}_2^{T}\boldsymbol{x}_{L}) = (0.44, -1.24)$ からの距離はそれぞれ 8.05, 2.10, 9.60 である.	A に対応する新しいサンプルを射影した点 $(\boldsymbol{w}_1^{\top}\boldsymbol{x}_A, \boldsymbol{w}_2^{\top}\boldsymbol{x}_A) = (5.52, 0.31)$ からの距離はそれぞれ $4.01, 3.57, 4.41$ である.
216	下 10 行目	$d_m(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{p} (x_i - y_i ^m)^{1/m}$	$d_m(\boldsymbol{x}, \boldsymbol{y}) = \left(\sum_{i=1}^{p} x_i - y_i ^m\right)^{1/m}$
242	1 行目	$ \phi > 1$ ならば	$ \phi_1 > 1$ ならば
250	下7行目	周期が λ_1 から λ_2 の変動に帰着する変動	周波数 λ_1 から λ_2 に帰着する 変動
272	14 行目	性質 1 $A,B \in V$ が連結でないなら、因子 A,B は独立である。	性質 1 $A,B \in V$ が連結でないことと、因子 A,B が独立であることは同値である.
282	12 行目	$\exp\left(-\frac{(x_i-\mu)}{2\sigma^2}\right)$	$\exp\left(-\frac{(x_i-\mu)^2}{2\sigma^2}\right)$
285	下6行目	アリゴリズム	アルゴリズム
314	下9行目	$\{g_1(x_1),\ldots,g_j(x_m))\}$	$\{g_j(x_1),\ldots,g_j(x_m))\}$
317	下 10 行目	標準誤差 $\epsilon \widehat{\mathrm{se}}(x) \epsilon$ 求め	標準誤差 $\widehat{\operatorname{se}}(x)$ を求め