『新装改訂版 現代数理統計学』

(竹村彰通 著, 学術図書出版社)

正誤表 第1版第1刷用

頁	場所	修正前	修正後
33	下4行目	ベータ関数の積率母関数	ベータ <mark>分布</mark> の積率母関数
57	1 行目	$Z_m = Y_{n-i_m+1} + \dots + Y_k$	$Z_m = Y_{k-i_m+1} + \dots + Y_k$
57	3 行目	$q_m = p_{n-i_m+1} + \dots + p_k$	$q_m = p_{k-i_m+1} + \dots + p_k$
60	(3.79) 式直後の行	$Z \sim \mathcal{N}(0, \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})$	$Z \sim \mathrm{N}(0, \frac{\Sigma_{22}}{\Sigma_{21}} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})$
69	下9行目	(3.19) 式より	(3.24) 式より
89	2 行目	$t = \sqrt{n-1}(\bar{X} - \mu)$	$t = \sqrt{n-1}(\bar{X} - \mu)/s$
95	14 行目	頑健性については推定論の章 (7章)及びノンパラメトリック法の章	頑健性についてはノンパラメトリック法の章
97	8 行目	$\mathrm{N}(\mu,1)$ から 1 個の観測値を得て μ を推定する	$N(\theta,1)$ から 1 個の観測値を得て θ を推定する
104	1 行目	事前確率をこれらの3点が等確率としたときに、ミニマックス決定関数及びベイズ決定関数を求めよ.	事前確率をこれらの3点が等確率としたときに、ベイズ決定関数を求めよ。またミニマックス決定関数を求めよ。
111	(5.11) 式	$R(\alpha, d_{\alpha}) =$	$R(\theta, d_{\alpha}) =$
114	下 4 行目	$= g\left(\frac{y}{\sqrt{n}}\right) \frac{1}{\sqrt{2\pi}} e^{-y^2/2 - \theta^2/2}$	$=g\left(\frac{y}{\sqrt{n}}\right)\frac{1}{\sqrt{2\pi}}e^{-y^2/2}$
114	下3行目	(6.11) 式は	(6.11) 式に $e^{ heta^2/2}$ をかけることにより
117	7 行目	開集合であり、 $T=(T_1, \dots, T_k)$ の分散共分散行列は非特異であるとする。これらの条件のもとで、 T は完備である。	開集合であるとする。この条件のもとで、 $T=(T_1,\ldots,T_k)$ は完備である。
120	下9行目	わかる。以上により	わかる. P^* 自体が十分であることは、離散分布の場合で考えると、 (6.20) 式の確率の比が各同値類で θ に依存しないことから、各同値類の条件つき分布が θ に依存しないことからわかる. 以上により
126	7行目	$E_{\theta} \left[\left(\frac{\partial \log f(x; \theta)}{\partial \theta} \right)^2 \right]$	$E_{ heta}igg[igg(rac{\partial \log f(oldsymbol{X}; heta)}{\partial heta}igg)^2igg]$
157	問 7.14 の 2 行目	問 7.11 の不偏推定量	問 7.13 の不偏推定量
167	1 行目	$A = \{x \mid T(X) \le c\}$	$A = \{x \mid T(x) \le c\}$
170	(8.18) 式	$\leq P_{\theta_0}(U \leq \alpha) =$	$\leq P(U \leq \alpha) =$
180	10 行目	$\alpha = E_{p_0}(\delta_{k,r})$	$\alpha = E_{p_0}[\delta_{k,r}]$
189	2 行目	$= (x - c'(\psi))p(x, \psi_0)$	$= (x - c'(\psi))p(x, \psi)$
196	問 8.10 の 3 行目	$\lambda_0=5, lpha=0.1$ の場合	$\lambda_0 = 5, \alpha = 0.1, n = 1$ の場合

204	下9行目	有意水準 1 – α の受容域	有意水準 $lpha$ の受容域
206	(9.19) 式	$P_{\theta}(\theta \in S(X)) = 1 - \alpha$	$P_{\theta}(\theta \in S(X)) \ge 1 - \alpha$
206	7 行目	未知の母数 $ heta$ を含む確率 (coverrage probability)	未知の母数 θ を含む確率 (被覆確率, coverrage probability)
213	下6行目	有意水準 $1-\alpha$ の受容域	有意水準 α の受容域
214	下2行目	$\alpha = 0.95$	$\alpha = 0.05$
228	(10.71) 式 (2か所)	$>\chi^2_{k-1}(\alpha)$	$>\chi^2_{lpha}(k-1)$
230	9 行目	$p_2 - p_1$ の信頼区間としては以下の 2 標本問題の検定方式を変形して $\hat{p}_2 - \hat{p}_1 \pm z_{\alpha/2} \sqrt{\left(\frac{1}{m} + \frac{1}{n}\right) \tilde{p}(1 - \tilde{p})}$	p_2-p_1 の区間推定は難しい. これは, H_0 : $p_2-p_1=\theta_0$ の検定が攪乱母数 (p_1) に依存し, 9.2 節で説明した信頼区間の構成が難しいためである. 簡便法としては
		(10.81) とおけばよい.ここで \widetilde{p} は以下の (10.89) 式で定義される "プールされた推定量" である.	$\hat{p}_2 - \hat{p}_1 \pm z_{\alpha/2} \sqrt{\frac{1}{m}} \hat{p}_1 (1 - \hat{p}_1) + \frac{1}{n} \hat{p}_2 (1 - \hat{p}_2)$ (10.81) を用いればよいが、実際の被覆確率が $1 - \alpha$ より小さくなる傾向が多くの文献で指摘されている。この点についての議論や対処法については、例えば Agresti and Caffo(2000) が参考になる.
235	問 10.5 の 5 行目	また (10.42) は	また (10.42) 式の逆数は
259	8 行目	eta を自由に動かして $Q(eta)$ を最小化すれば	eta を自由に $動かせば$
261	11 行目	$c^{\top}G_1\hat{\eta} = c\hat{\mu}$	$c^{T} G_1 \hat{\eta} = c^{T} \hat{\mu}$
267	下2行目	自由に動くとき	自由に動かせば
273	(12.2) 式	$H_0: \xi = \xi_0$	$H_0: \xi \le \xi_0$
278	下 15 行目	タイの与え方	タイがある場合の順位の与え方
281	5 行目	正確な有意水準 α	検定のサイズ $lpha$
312	下 10 行目	1702-61	1701 または 02-61
312	下6行目	1920 年代	1930 年代
316	7行目,8行目	$E_{\pi}(p)$	$E_{\pi}[p]$
324	2 行目	f(x/ au)/ au	f(x / au)/ au
325	下3行目	I(p) = 1/(p(1-p))	$I(p) = \frac{\mathbf{n}}{(p(1-p))}$
325	下1行目	$\pi(p) = p^{-1/2}(1-p)^{-1/2}$	$\pi(p) \propto p^{-1/2} (1-p)^{-1/2}$
330	下1行目	最も不利な分布とはベイズリスクを	最も不利な分布とは δ_π を用いたときのベイズリスクを

以下を追加してください.

また以下の論文を参照した.

Agresti, A. and Caffo, B., (2000), Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, *The American Statistician*, **54**, 280–288.