『新装改訂版 現代数理統計学』

(竹村彰通 著, 学術図書出版社)

正誤表 第1版第5刷用

頁	場所	修正前	修正後
33	下4行目	ベータ関数の積率母関数	ベータ分布の積率母関数
69	下9行目	(3.19) 式より	(3.24) 式より
89	2 行目	$t = \sqrt{n-1}(\bar{X} - \mu)$	$t = \sqrt{n-1}(\bar{X} - \mu)/s$
95	14 行目	頑健性については推定論の章 (7章) 及 びノンパラメトリック法の章	頑健性についてはノンパラメトリック法の章
97	8 行目	$\mathrm{N}(\mu,1)$ から 1 個の観測値を得て μ を推定する	N(heta,1) から 1 個の観測値を得て $ heta$ を推定する
111	(5.11) 式	$R(\alpha,d_{lpha})=$	$R(\theta, d_{lpha}) =$
114	下 4 行目	$= g\left(\frac{y}{\sqrt{n}}\right) \frac{1}{\sqrt{2\pi}} e^{-y^2/2 - \theta^2/2}$	$= g\left(\frac{y}{\sqrt{n}}\right) \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$
114	下3行目	(6.11) 式は	(6.11) 式に $e^{ heta^2/2}$ をかけることにより
117	7 行目	開集合であり、 $T=(T_1, \dots, T_k)$ の分散共分散行列は非特異であるとする。これらの条件のもとで、 T は完備である。	
126	7行目	$E_{ heta} \left[\left(rac{\partial \log f(x; heta)}{\partial heta} ight)^2 ight]$	$E_{ heta} igg[igg(rac{\partial \log f(old X; heta)}{\partial heta} igg)^2 igg]$
167	1 行目	$A = \{x \mid T(X) \le c\}$	$A = \{x \mid T(x) \le c\}$
170	(8.18) 式	$\leq P_{\theta_0}(U \leq \alpha) =$	$\leq P(U \leq \alpha) =$
180	10 行目	$\alpha = E_{p_0}(\delta_{k,r})$	$\alpha = E_{p_0}[\delta_{k,r}]$
189	2 行目	$= (x - c'(\psi))p(x, \psi_0)$	$= (x - c'(\psi))p(x, \psi)$
204	下9行目	有意水準 $1-\alpha$ の受容域	有意水準 α の受容域
206	(9.19) 式	$P_{\theta}(\theta \in S(X)) = 1 - \alpha$	$P_{\theta}(\theta \in S(X)) \ge 1 - \alpha$
206	7 行目	未知の母数 $ heta$ を含む確率 (coverrage probability)	未知の母数 $ heta$ を含む確率 (被覆確率, coverrage probability)
213	下6行目	有意水準 1 – α の受容域	有意水準 α の受容域
228	(10.71) 式 (2か所)	$>\chi^2_{k-1}(\alpha)$	$>\chi^2_{\alpha}(k-1)$

230	9 行目	p_2-p_1 の信頼区間としては以下の 2 標本問題の検定方式を変形して $\hat{p}_2-\hat{p}_1\pm z_{\alpha/2}\sqrt{\left(\frac{1}{m}+\frac{1}{n}\right)\widetilde{p}(1-\widetilde{p})} $ $\qquad \qquad (10.81)$ とおけばよい.ここで \widetilde{p} は以下の $\qquad (10.89)$ 式で定義される "プールされた推定量" である.	p_2-p_1 の区間推定は難しい。これは、 H_0 : $p_2-p_1=\theta_0$ の検定が攪乱母数 (p_1) に依存し、 9.2 節で説明した信頼区間の構成が難しいためである。簡便法としては $\hat{p}_2-\hat{p}_1\pm z_{\alpha/2}\sqrt{\frac{1}{m}\hat{p}_1(1-\hat{p}_1)+\frac{1}{n}\hat{p}_2(1-\hat{p}_2)}$ (10.81) を用いればよいが,実際の被覆確率が $1-\alpha$ より小さくなる傾向が多くの文献で指摘されている。この点についての議論や対処法については、例えば Agresti and Caffo(2000) が参考になる.
259	8 行目	eta を自由に動かして $Q(eta)$ を最小化すれば	etaを自由に動かせば
261	11 行目	$c^{\top}G_1\hat{\eta} = c\hat{\mu}$	$c^\top G_1 \hat{\eta} = c^\top \hat{\mu}$
267	下2行目	自由に動くとき	自由に <mark>動かせば</mark>
273	(12.2) 式	$H_0: \xi = \xi_0$	$H_0: \xi \le \xi_0$
278	下 15 行目	タイの与え方	タイがある場合の順位の与え方
281	5 行目	正確な有意水準 α	検定のサイズ α
312	下 10 行目	1702-61	1701 または 02-61
312	下 6 行目	1920 年代	1930 年代
316	7行目,8行目	$E_{\pi}(p)$	$E_{\pi}[p]$
324	2 行目	f(x/ au)/ au	f(x / au)/ au
325	下3行目	I(p) = 1/(p(1-p))	$I(p) = \frac{n}{(p(1-p))}$
325	下1行目	$\pi(p) = p^{-1/2}(1-p)^{-1/2}$	$\pi(p) \propto p^{-1/2} (1-p)^{-1/2}$
330	下1行目	最も不利な分布とはベイズリスクを	最も不利な分布とは δ_π を用いたときのベイズ リスクを
342	末尾		以下を追加してください。 また以下の論文を参照した。 Agresti, A. and Caffo, B., (2000), Simple and effective confidence intervals for pro- portions and differences of proportions re- sult from adding two successes and two failures, <i>The American Statistician</i> , 54 , 280-288.