物理学概論 — 高校物理から大学物理への橋渡し— [熱・波・電磁気・原子編] (第1版 第1刷)

正誤表

頁	行	誤	ΙΈ
1	下から 11	1.013×10^6 Pa	$1.013 \times 10^{5} \text{ Pa}$
6	注 18	$1.0315\times 10^5~\mathrm{Pa}$	$1.01325 \times 10^5 \text{ Pa}$
8	注 20	$6.02214026 \times 10^{23} \text{ mol}^{-1}$	$6.02214076 \times 10^{23} \text{ mol}^{-1}$
9	8	$1.00 \times 10^{-1} \text{ mol となる.}$ 以下は	1.00×10^{-1} mol となる。 ただし,圧力の有効桁が 2 桁なので物質量は 1.0×10^{-1} mol とする.以下は
9	9,11,13	$1.00\times10^{-1}~\mathrm{mol}$	$1.0 \times 10^{-1} \text{ mol}$
75	下から 10	$\cos^2\frac{\pi}{2n} \sim 1 - \frac{1}{4n^2}$	$\cos^2\frac{\pi}{2n} \sim 1 - \frac{\pi^2}{4n^2}$
75	下から 9	$\left(1 - \frac{1}{4n^2}\right)^n \sim 1 - \frac{n}{4n^2}$	$\left(1 - \frac{\pi^2}{4n^2}\right)^n \sim 1 - \frac{n\pi^2}{4n^2}$
114	注 14	$T = \frac{N}{A^2} \cdot \frac{A}{m} = \frac{kg}{m \cdot s^2}.$	$T = \frac{N}{A^2} \cdot \frac{A}{m} = \frac{kg}{A \cdot s^2}.$
		235 U 11 11 11 11 11 11 11 11 11 11 11 11 1	235 ₉₂ U

補足

問題8.2では、電圧の正負についての質問が多くありました. 以下のように考えてください.

- (1) 電極 X と Y は、コイルの外部で抵抗 R によって接続する.
- (2) 最初の磁束密度が増える過程(0 s < t < 2.0 × 10^{-2} s) では、コイルに流れる電流は Y \rightarrow X である.
- (3) 外部の抵抗 R に電流は流れるが、その向きは X から Y の向きになる.
- (4) これは、「X の電位が Y よりも高い」と考えることができる.
- (5) よって、グラフを描く場合は、 $0 \text{ s} < t < 2.0 \times 10^{-2} \text{ s}$ の電圧は正とする.
- (6) 他の時刻も同様に考えることができる.

電池の中では、化学エネルギーのおかげで、負(正)の電極から正(負)の電極へ正の電荷 (電子)が移動する、この問題も、電池の場合と同様である。